
UNIVERSITY

A Full Field, 3-D Velocimeter
for Microgravity Crystallization
Experiments

Robert S. Brodkey and Keith M. Russ

Department of Chemical _Engineering

NASA Lewis Research Center

Cleveland, Ohio 44135

N91-22465

G3129

Uncl ,_s

0009037

Grant No. NAG 3-1039

Final Report

Apnl 1991

--(NASA-CR-188147) A FULL FIELD, 3-O

VELOCIMETER FOR MICROGRAVITY CRYSTALLIZATION

EXPERIMENTS Fin31 Report (Ohio State Univ.)
57 p CSCL 22A

L
......=,=.......

UNIVERSITY

A Full Field, 3-D Velocimeter
for Microgravity Crystallization
Experiments

Robert S. Brodkey and Keith M. Russ
Department of Chemical Engineering

ORIGINALCO,_TAR_$

COLORJLLUSTP,ATIOMS

NASA Lewis Research Center

Cleveland, Ohio 44135

Grant No. NAG 3-1039

Final Report
RF Project No. 767435/722039

April 1991

Contents

1. Overview ... 2

2. Basic experimental statement 2

3. View configuration ... 2

4. Hardware configuration 3

5. Computer configuration 3

6. Image processing .. 5

7. Image analysis ... 5

8. Conclusions ... 7

Appendices

A. PART_ID.FOR .. 21

B. DE-r_VECT.FOR .. 31

C. Equipment Specifications 47

PRECEDING PAGE BLANK NOT FILMED

2

Overview

In our proposal, we set forth to develop the programming and algorithms

needed for implementing a full-field, 3D velocimeter for laminar flow systems, and

to recommend appropriate hardware to fully implement this ultimate system.

Over the course of the project, we realized that these two steps are not as

distinctly separate as we once thought; the software solutions can be modified

to take advantage of various hardware configurations.

This summary indicates one possible hardware solution, already provided

in the informal report provided to NASA researchers in January, 1990. The current

state of our programming efforts is also provided, as well as such code as is

appropriate.

Baslc experimental statement

The velocimeter should consistof two views of the flow system, inthiscase

the interface area of a crystallizationexperiment. These views are directly

digitizedby the use of a video camera(s) and a computer digitizerboard(s), and

the velocitiesdetermined by a combination of hardware image processing and

software image analysis.

View conflguratlon

The simplest view configuration to visualize is a pair of video cameras

mounted at right angles to each other (orthogonal views), with a common field

of view in the flow system. This will require a synched pair of video cameras and

digitizer boards, as well as synched rails for camera motion. These views were

tested by NASA by simulating the flow in a crystallization ampoule (Plate l(a-b)).

Although it is not readily apparant in the image pair, some 50% or more of the

viewed volume is blocked for 3D analysis by the heater element images (after

simple processing). This blockage made 3D path matching an almost impossible

task, especially when the lack of registration points in the images and the

difference in the view magnification (obvious in Plate l(a-b)) are considered.

3

Itisrecommended that the orthogonal viewing (90° angle) be replaced

with a low to medium angle viewing, between stereo angle separation

(approximately 10°) and about 30°. Thiswillreduce blockage effectsat the cost

of depth accuracy. As the flow system islaminar, depth accuracy should be

considered a minor point.

There has recently been developed a single camera 3D acquisition

technique. Such a technique holds significantpotential for replacing low angle

stereo viewing, as well as reducing hardware costswithout significantlydegrading

software computational requirements. We hope to investigate this option,

pending furthersupport.

Hardware configuration

This is perhaps the most flexible area, although dependent on (and

instrumental in) the view configuration decided upon above. Two digitizer boards

(to avoid image capture sequencing) and two video cameras would be required

for stereo acquisition, each capable of 512x512 resolution (black and white). The

EPIX I MEG VIDEO Model 10 digitizer board appears to be an excellent choice.for

this work: it is capable of storing 4 images in its own memory, and has an

on-board digital processor that can be programmed to perform the image

processing we envision to be necessary. Such on-board processing should

provide significant reductions to computation time.

The video cameras each need to be of around 512x512 non-interlaced

resolution (either to the RS-170 resolution of 768x480 pixeis, or perhaps the

European CCIR standard of 768x580 pixels). Such units are relatively inexpensive

($ 1,500 apiece and up, without lenses). Of the two standards, the CCIR hardware

appears to be more attractive with its higher resolution.

Computer configuration

The host computer for the imaging hardware would dictate the speed at

which the images are analyzed for velocity, as well as any control actions one

4

may wish to take as a result of such data. For the computer, it seems necessary

to obtain the absolute best performance at the most reasonable cost. Currently,

this claim rests with Intel's 80486 processor, in whatever machine from whatever

vendor. The majority of machines available now are based on Intel's 80386,

which for similar clockspeeds operates up to 2 to 4 times more slowly than an

80486. Unfortunately, the 80486 is so recent that software availability is limited.

The minimum requirements are an 80386 machine, at whatever clockspeeds are

available (80386 computers can be found running at 16,20, 25 and 33 MHz; costs

start rising significantly with the 25 and 33 MI-IZ models), using at the absolute

minimum 2 MB of RAM and preferably 4 MB. Video adapters and hard drives are.

of secondary importance, since all of the grunt work will take place between the

CPU and the RAM. it is therefore essential that the RAM be of sufficient speed to

match the CPU.

The 80386 can run the MS-DOS or UNIX operating systems. UNIX is perhaps

the preferential system, especially when paired with the C programming

language. Since C and UNIX are still in standardization, however, it is perhaps

better to stick to the older FORTRAN language in MS-DOS, which provides all the

numerical routines you could ever wish for at the expense of data handling. Such

a compiler needs to run under a MS-DOS extension to allocate and utilize large

arrays 512x512 or larger), and should be specific for the 80386 instruction set (or,

if an 80486 is used it should be specific to it). A particularly inviting compiler and

related software that fits this description is marketed by MicroWay. Their NDP

Fortran-386, as illustrated by their data sheet, provides excellent

number-crunching facilities. When combined with the Phar-Lap DOS extender,

this PC-based compiler can access arrays limited only by the on-board RAM (in

this case, the recommended 2-4 MB); additionally, a virtual memory manage can

be added to utilize the hard drive as virtual RAM, thereby economically increasing

potential array size.

Finally, an Assembler linker would be needed to best utilize the EPIX boards.

The EPIX boards include an on-board digital signal processor, programmable in

5

Assembler. The EPIXpeople recommend the product of Avocet, at around $350.

Image processing

Our current technique isto take a sequence of images (at least3, but it

could be up to 8),create a serlesof binary Images from these, and add them

together to create one Image foranalysis.From thisone Image particlevelocities

and paths can be calculated foreach resultantframe. The combination of the

images can be accomplished by

n

Sj.k=)-_ 2,-I i,,, (I)
/=I

for n=3,4,5,6,7, or 8, and for every _j,k)th point in the original images (I_. Three of

the NASA slides (of which Plate l(a) is the first), digitized and added together by

the above equation, is given In Plate ll(a). This represents the final output of

image processing.

Image analysls

Image analysisof the particlepaths, clearlyvisibleinPlate ll(a-b),represents

three operations: particle identification,whereby the particlesare located by

theircenters, grey levels,and size;particle tracking,whereby the particlesare

tracked within the image; and 3D track matching, which matches tracks within

the two views to determine the 3D information. The particle identification

algorithm, a modification of that by Chang et al.(1985)I,identifiesthe particles

from top to bottom, leftto right,row by row. The identifiedparticlesare screened

to eliminate spurlous anomalies leftover from image processing (i.e.below a dm_

or above a d_). The particlesfound from thisfor Plate ll(a)are given in Figure

I. The code isgiven in Appendix A, and a flowchart in Figure 2.

IChang, T.P.K,Watson, A.T.,and Tatterson,G.B., Image Processlng of Tracer

ParticleMotions as Applied to Mixing and Turbulent Flow - I.The Technique, Chem.

Eng. Sci.40, 269 (1985)

6

The particle tracking algorithm utilizes a rudimentary form of path and

velocity coherence. The particles found from the previous step are sorted into

four lists, one for each frame. Due to the nature of the particle ID algorithm,

these particles are already approximately sorted in the lists from low to high y

values. Starting from the beginning, each 1st frame particle is compared with

candidate 2nd flame particles, and each 2nd flame with candidate 3rd frame

particles, until one of the following conditions is met:

BY > _Ym_ (2a)

Iv"-*2-v2_ < tol v and _-_-02-_ < t°l° (2b)

I
where 1,2, and 3 refer to frames, and e is the angle as if the particle pair were in

polar coordinates (of which the magnitude of the velocity is the other coordinate;

see Figure 3). Ay_x is the maximum expected flame-to-frame particle movement

in y, tol v is the maximum change in average velocity between each pair of

frames, and tol e is the maximum angular motion of the particle. This represents

the basic tracking algorithm; its implementation was modified by using a

simulated image.

Some of the particle paths in Figure 1 are clearly visible; others are not. It

is not easy to quantify the particle tracking algorithm in such a case. To help

determine the accuracy of the tracking algorithm, a test image was created

having 200 randomly determined velocity vectors (Figure 4).

It was found that the tracking algorithm (Eq. 2) ran exceedingly fast. To

increase the tracker's accuracy, multiple passes (varying _Ym_x" toIv" tole) were

implemented. In addition the lists were matched in reverse order, i.e. from

bottom right to upper left,and compared to the forward direction; particle tracks

that were found in both directions were kept, while the remaining were

7

discarded. The results of the tracking are given in Table I and Figure 5(a-b). The

tracker only utilizes three frames' data, fourth flame data could be used to

perhaps increase accuracy further.

Figure 6(a-b) represents the output of the tracker on the data from Figure

1. Not all particles represent a particle track, as some are the result of noise in the

original image. There areapproximately 94 actual tracks in view; of these, 81

(86.2%) were correctly matched, while 4 (4.3%)were mistracked. The code for the

tracker is given in Appendix B, and a flowchart is given in Figure 7.

3-D matching has not, as yet, been Implemented due to the problems

mentioned in section 3. The identified particles and tracks for Plate II(b) are given

in Figures 8 and 9(a-b), respectively.

Conclusions

Itappears that imaging willprovide a viable solutionto the laminar tracking

problem. Certainly the algorithms given here are simple, which in turn should

speed processing. Accuracy isgood, but processing times are unknown as we

haven't the hardware or software to properly testthe code, as a resultof not

being able to fullyimplement the second year of the proposed study. On a

heavily loaded VAXstation 3100 the particleidentificationcan take 15-30seconds,

and the tracking completed inunder a second. Itseems reasonable to assume

that 4 image pairscan be thus be acquired and analyzed in under I minute.

The remaining stumbling blocks inthe project appear to be the choice of

tracer particleand two processing problems: 3-D matching and settlingvelocity

estimation (the extent of thisproblem isdependent on tracer particle choice,

obviously).

ORIGINAL PAGE

COLOR PHOTOGRAPH

8

ga
o

ORIGINAL PAGE IS

OF POOR QtJAUTY

ORIGINAL PAGE

,COLOR PHOT_OGRAPH ?

ORIGINAL PAGE IS

OF POOR QUALITY

10

+

t • " _>

. i_-_• • _ "." .. • . I.- .:

° o • jo_ ° 45

......."
• :" • _

- : •
, , e • •

I ". _" • _ " : •
. • •

"" "_ ___
_. ,.... -., .. :__..

• e e •

I* • ,p,, ,*4 k• • Ooe*° eqj _ ee • ooze

oeell

/ " "" -."'" "" ""

i i i i i I I I I I I | I I J I I I I I J I I I I J I I i I I I I I I I t I I U | I I I I I

11

.i#1

l

(XO.2) -> G('X(i,2)))

(X(i-l._)

I_='1

_ Y _ ' ly

1" _g- I

l

i Y

Figure 2: Flowchart for PART_ID.FOR.

12

3

v2_3

2

Figure 3. 3 point simplistic tracker.

13

0

, ° :..° °. ", o:• qwe • • • • • _m•

u o ,p • eeo4' I.

m • go •

• • ° t • °°_°

i ..:" . • ".

+ o •
tl • _.

• *_e • (' _ • °° • e°

." ..*.+ '_- .

4' eO + • Od'
• o e • •... ./ . . - •

... ."oe • •
(e

eeo °+ e

° ee e e

• e oje • •

• _.+o o°1+

° o'_1 °4. •

eO _' ,

; ;% •
_ t

+°¶+

.',.
• e
oo

." _, ." .._ ."
" _o •+

<+ok e o

9 •

Ooe • •

•'. -

• e,i • • e •
o_, (. o4,• ... _ ".'.

• i+i 4. e, •J • • pe ,_,eo •I l l I I InI I U I I I II l I J I I lJl I I I I I |In I I I I I I U I I I I I I I l I l

uol&ooo-I leX!ci k

°

14

Table I: Results of the tracker on the simulated image, Figure 4.

Iteration Ayes= TOL,, TOLo %NotFound %Wrong % Correct

1 5 1.0 1.0 81.00 1.00 18.00

2 10 0.8 1.0 12.00 4.50 83.50
3 15 0.5 1.0 5.00 5.50 89.50

¢_

\
,f

t

\.#

8

%
,o

uo!ioOOl leX!d A

15

7_

,__ ._ ,_
OO

o _

:#1

,/ . ' '.. '-_ _
.. t t. _ _._

.,' /,..1 " " __l:: .

"" "t 5 .+.'S

t t t t I t I I i t I i t t t I t I _) _ P"..,,_ '"_'"'""'_'"'"'"_' ,,,,,,_-o .._ .o 8 ._,_.._

uot_ooqtex._A _

• . .. • . :_ _ _
/ ,.__ --.- C: ._._

' i "--...-q... _ _ _;

." . ,,.,- -o-. " °'_8
- _._

,/ _.._ .-. :_ _-:_ _
I _'# , X

I

,,./ ,. -,..,
•

° # '8

.1
IIIIII IIIIIIIIIIIIIIIIIIIIIII jlllllllllllllllllll I

uoNooo-I leX!d k

17

Y

Figure 7: Rowchart for DET_VECT.FOR.

18

0

i i i i t i t i i i i i i i i t i I i i i i i i i i i i I _l _ __

-
uo!_oOO'l leX.klA _

I I

uo!,l.OOO-IleX!d A

Appendix A

21

c
c

c

c

c

c

c

c

c

c

PART_ID. FOR

This program takes an ASCII image (formatted output
from program XFII_TO_ASCII.FOR) and identifies and

outputs particle locations by grey. It is meant to work
with a 4-binary summed image, using i, 2, 4, and 8 as

the binary image multipliers. Output is directed to

FOR008.DAT

_ww

C

C The structure /AREA_TYPE/ is used to hold the particle
C information. Particle centers are determined by presuming them

C to be reasonably shaped, ie average between min & max
C extensions are used. NUM_PIX is used to count actual particle

C size. COLOR is actually grey level, ie i, 2, 3, or 4.

C

C

C

C

C

C

C

C

C

C

C

C

C

STRUCTURE /AREA_TYPE/

INTEGER MINHOR,MAXHOR

INTEGER MINVER,MAXVER

INTEGER NUM_PIX
INTEGER COLOR

END STRUCTURE

RECORD /AREA_TYPE/ AREA(2000)
STRUCTURE /SORTED_AREA_TYPE/

REAL XC,YC

INTEGER NUM_PIX

INTEGER NEXT,AVAIL,LINK,ACT
END STRUCTURE

RECORD /SORTED_AREA_TYPE/ SA(4,1000)

IMAGE holds the 512x512 image array. Because of the size of

this array, this program works significantly better on the
VAX 8550 than on the MicroVAX. IMTE is temporary storage;

this always contains the currect line and the line directly
above it. Makes identification a lot easier.

INTEGER IMAGE(512,512),X,Y, JUNK(54),IMTE(2,512,5)

CHARACTER*20 FILENAME

INTEGER AREA_COUNT, JUMP,COUNT(4),XEXTENT, YEXTENT

INTEGER I,J,I2,J2,I3,J3,PSEUDO_GREY

INTEGER ORIG(8),ORIG2(8),ORIG3(8),ORIG4(8)

INTEGER PSEUDO_AREA,MIN_PIX,MAX_PIX,COL,NUM

Set some arbitrary tolerances on particle sizes, where

MIN_PIX represents the minimum number of pixels to define a

particle, and MAX_PIX defines the maximum number of pixels.

MIN_PIX=4

MAX_PIX=I50

22

1

C

C
C

C

C

C

C

C

5

i0

220

230

C

C

C

C

C

C

C

C

C

C

C

C

C

TOL=0 .5

TYPE*, 'Enter ASCII image Filename'

READ (5, I) FILENAME

FORMAT (A20)

OPEN (UNIT=3, STATUS='OLD' , READONLY,
1 FILE = FILENAME, DEFAULTFILE=' .I')

READ(3, *) LINES, PIXELS

DO i0 I=I,LINES

TYPE*, I
READ(3,5) (IMAGE(I,J), J=I,PIXELS)

READ (3,5)

READ (3,5)

FORMAT (1814)
CONTINUE

AREA_COUNT= 0

II and I2 are switching parameters for IMTE, allowing us

to only refill the row needed to be refilled.

Ii=l

Main iteration loop. Since we check the line above the

current line, start at line 2.

DO i00 I=2,LINES

IF (II.EQ.2) GOTO 220
Ii=2

I2=I

GOTO 230
Ii=l

I2=2

CONTINUE

Row iteration loop. Since we check to left and right of

current particle position, loop so that these positions are

occupied.

DO 200 J=2, (PIXELS-I)

Set IMTE storage. IMTE at each point contains the original

grey level (IMTE(any,any, 5)), and particle id for each grey

found in that pixel and identified (IMTE(any,any, l--4)).

IMTE (I2, J, 5) =IMAGE (I, J)

IMTE (I2,J, i) =0

IMTE (I2, J, 2) =0

IMTE (I2, J, 3) =0

IMTE (I2, J, 4) =0

Check if background.

23

c
c
c
c

c
c
c
c
c
c
c

c
c
c

c
c
c

IF (IMAGE(I,J).EQ.0) GOTO200

DECOM_GREYtakes the grey level and returns, in ORIG, a
ID matrix representing the original image flags.

CALL DECOM_GREY(IMAGE(I, J) ,ORIG)

PSUEDO_GREYis a buildup of identified greys, which once
it equals IMAGE(I,J), a full match has been found. This
is needed since we could match in more than one direction
correctly. Continue matching until PSEUDO_GREY is satisfied

or all directions checked.

PSEUDO_GREY=0

Check left, same row...

IF (IMTE(I2,J-I,5).NE.0) GOTO 140

Check left, row above...

ii0 IF (IMTE(II,J-I,5).NE.0) GOTO 150

C

C Check above, row above...

C

120 IF (IMTE(II,J,5).NE.0) GOTO 160

C

C Check right, row above...

C

130 IF (IMTE(II,J+I,5).NE.0) GOTO 170
GOTO 400

C

C

C

C

C

140

150

160

170

The following set JUMP parameters from the above checks,
so that the next position can be checked if PSEUDO_GREY is
unfulfilled.

I3=I2

J3=J-i

JUMP=I

GOTO 180

I3=Ii

J3=J-i

JUMP=2
GOTO 180

I3=II

J3=J

JUMP=3

GOTO 180

I3=Ii

J3=J+l

JUMP=4

180
C
C
C
C
C
C

C
C
C
C

C
C
C
C
C

C
C
C
C

COSINE

Check, quick and dirty, if a complete match is made from
checked pixel to the current one. If so, ignore all previous
matches and substitute, on a one-for-one basis, the matches
in IMTE(I3,J3,x).

IF (IMTE(I3,J3,5) .EQ.IMAGE(I,J)) GOTO190

No quick and dirty.
pixel...

Decompose the grey in the appropriate

CALL DECOM_GREY (IMTE (I3, J3,5),ORIG2)

Now check the grey, matrix element by matrix element, against

ORIG (ie the pixel greys to be added to some particle,

somewhere).

DO 300 ICNT=I,4

IF (IMTE(I2,J, ICNT).NE.0) GOTO 300
IF ((ORIG(ICNT) .EQ.0) .OR. (ORIG2(ICNT) .EQ.0)) GOTO 300

A match has been made; update PSEUDO_GREY, and set

IMTE(I2,J, ICNT) equal to the new grey, IMTE(I3,J3,ICNT).

PSEUDO_GREY=PSEUDO_GREY+2**(ICNT-I)

IMTE(I2,J, ICNT)=IMTE(I3,J3,ICNT)
300

C

C

C

C

C

C

C

C

C

C

C

400

CONTINUE

Quick; has PSEUDO_GREY been completed?

IF (PSEUDO_GREY.EQ.IMAGE(I,J)) GOTO 320

Otherwise, jump back and check rest of directions.

IF (JUMP.EQ.I) GOTO ii0

IF (JUMP.EQ.2) GOTO 120

IF (JUMP.EQ.3) GOTO 130

OK, PSEUDO_GREY has not been completely filled, ie a

new particle area must be created. Find out colors/areas
that need to be created.

CALL DECOM_GREY(PSEUDO_GREY, ORIG2)

DO 330 ICNT=I,4

IF (ORIG(ICNT).EQ.0) GOTO 330
IF (ORIG(ICNT).EQ.ORIG2(ICNT)) GOTO 340

C

C One last check; two to right and above. A perfect sphere,

C when digitized, will have this sort of structure. If

C the grey being created already exists at (Ii,J+2), then

25

C check at I2,J+l for the same grey - ie a continuous path.

C Otherwise, ignore and create a new particle.

C

CALL DECOM_GREY (IMTE (Ii, J+2,5),ORIG3)

IF (ORIG(ICNT) .EQ.ORIG3(ICNT)) GOTO 301
302 CALL START_NEW_AREA (I, J, AREA_COUNT, ICNT, AREA)

C
C Particle identification number...

C
IMTE (I2, J, ICNT) =AREA_COUNT

GOTO 330

301 CALL DECOM_GREY (IMTE (I2, J+l, 5) ,ORIG4)

IF (ORIG4 (ICNT) .NE.ORIG3 (ICNT)) GOTO 302

IMTE (I2, J, ICNT) =IMTE (Ii, J+2, ICNT)

C

C Matched that guy, so UPDATE that area.
C

340 CALL UPDATE_AREA (I, J, IMTE (I2, J, ICNT) ,AREA)

330 CONTINUE
GOTO 200

C

C Update IMTE storage.
C
190

310

320

C

C

C

C

350

2OO

5O0

i00

C

C

C

C

C

C

C

C

DO 310 ICNT=I,4

IMTE (I2, J, ICNT) =IMTE (I3, J3, ICNT)

CONTINUE

CONTINUE

Complete set of grey level matches, ie no new particles

found for a pixel. Update appropriate areas.

DO 350 ICNT=I,4

IF (ORIG(ICNT).EQ.0) GOT<) 350

CALL UPDATE_AREA (I, J, IMTE (I2 ,J, ICNT) ,AREA)

CONTINUE

CONTINUE

WRITE (6,500) I, AREA_COUNT
FORMAT(' After ',I4," lines, ',I4, ' areas have been ',

1 'found')
CONTINUE

Image has now been reduced to identified areas. Check against

some preliminary idea of what is being identified, ie against

MIN_PIX and MAX_PIX (set at beginning of program), and for

a roughly spherical shape...

DO 910 I=I,AREA_COUNT
IF ((AREA(I).NUM_PIX).LT.(MIN_PIX)) GOTO 911

IF ((AREA(I).NUM_PIX).GT.(MAX_PIX)) GOTO 911

PSEUDO_AREA represents area of square bounded by AREA's

26

C min's and max's. This is comparable to NUM_'PIX, knowing

C roughly what the expected shape is.

C TOL is used to set the value of the shape parameter;

C A perfect circle, for example, would be a TOL of
C 0.785 ((pi*d^2/4)/d^2, or (pi/4)). Since this is a

C finite world, a less restrictive TOL is required

C (I generally use 0.5, which would allow a 3X3 particle,

C identified as a '+', to pass (ie 5/9)).

C

C

C OK,
C

202

921

945

911

PSEUDO_AREA= (AREA (I). MAXHOR-AREA (I). MINHOR)

PSEUDO_AREA= PSEUDO_AREA* (AREA (I).MAXVER-AREA (I). MINVER)
IF ((TOL*PSEUDO_AREA) .LT. (AREA(I) .NUM_PIX)) GOTO 911

XEXTENT= (AREA (I). MAXHOR-AREA (I).MINHOR+ 1)

YEXTENT= (AREA (I).MAXVER-AREA (I) .MINVER+I)

IF ((MAX (XEXTENT, YEXTENT)/MIN (XEXTENT, YEXTENT)) .GT. 6)

1 GOTO 911

passes all tests.., ready for output to FOR008.DAT

COUNT (AREA (I). COLOR) =COUNT (AREA (I). COLOR) +i

XC =FLOAT (AREA (I).MAXHOR+AREA (I). MINHOR) /2

IF (AREA(I).COLOR.NE.4) GOTO 202
YC =FLOAT (AREA (I) .MAXVER+AREA (I) .MINVER) /2

X=AREA (I). COLOR

Y=COUNT (AREA (I).COLOR)

SA (X,Y). XC=XC
SA (X, Y). YC=YC

SA (X, Y). NUM_PIX=AREA (I). NUM_PIX

IF (X.EQ.I) GOTO 921

SA (X, Y). NEXT=COUNT ((AREA (I).COLOR) -1)

SA (X, Y). AVAIL=I

SA(X, Y) .LINK=0

SA(X,Y) .ACT=I

MIH=AREA (I). MINHOR

MXH=AREA (I). MAXHOR

MIV=AREA (I) .MINVER

MXV=AREA (I) .MAXVER
COL=AREA (I). COLOR

NUM=AREA (I). NUM_PIX

WRITE(8,945) I,COL,NUM, XC,YC,MIH,MXH,MIV, MXV

FORMAT(' ',316,2FI0.I,416)
GOTO 910

XC =FLOAT (AREA (I). MAXHOR+AREA (I). MINHOR)/2

YC=FLOAT (AREA (I). MAXVER+AREA (I) .MINVER)/2

MIH=AREA (I). MINHOR

MXH=AREA (I) .MAXHOR

MIV=AREA (I) .MINVER

MXV=AREA (I) .MAXVER

COL=AREA (I) .COLOR

NUM=AREA (I) .NUM_PIX

WRITE (9,945) I,COL,NUM, XC, YC,MIH,MXH,MIV,MXV

920
930
940
950
910

961

FORMAT(' ' ,216,218)
FORMAT(' ',2F8.1)

FORMAT(' ',216)

FORMAT(' ',216,/)

CONTINUE

WRITE (8,945) 0,0,0, 0.0,0.0,0,0,0,0

WRITE (8,920) 0, 0,0

WRITE (8, 961) NUMA

WRITE (9,920) 0,0,0

WRITE (9,961) NUMB

FORMAT(' ',I6)
STOP

END

27

C

C

C

C

C

20

i0

28

SUBROUTINE DECOM_GREY(GREY_LEVEL,ORIG)

Subroutine to decompose the pixel value into its constituent

grey level components, namely I, 2, 4 and 8. These are

returned as flags in the ORIG matrix.

INTEGER GREY_LEVEL, ORIG (8) ,GTEMP

GTEMP=GREY_LEVEL
DO i0 I=l, 4

IF (GTEMP.LT. (2"*(4-I))) GOTO 20

GTEMP=GTEMP- (2** (4-I))

ORIG (5-I) =i
GOTO i0

ORIG (5-i) =0

CONTINUE

END

29

C

C

C

C

SUBROUTINE START_NEW_AREA(I,J,AREA_COUNT,GREY,AREA)

Subroutine to start a new area, and initialize its
values.

STRUCTURE /AREA_TYPE/

INTEGER MINHOR, MAXHOR

INTEGER MINVER, MAXVER

INTEGER NUM_PIX
INTEGER COLOR

END STRUCTURE

RECORD /AREA_TYPE/ AREA(7000)

INTEGER AREA COUNT, GREY

AREA_COUNT=AREA_COUNT+ 1
AREA (AREA_COUNT) .MINHOR=J

AREA (AREA_COUNT) .MAXHOR=J

AREA (AREA_COUNT). MINVER=I
AREA (AREA_COUNT). MAXVER= I

AREA (AREA_COUNT). NUM_PIX=I
AREA (AREA_COUNT). COLOR=GREY

END

30

C

C

C

SUBROUTINE UPDATE_AREA (I, J, AREA_NUM, AREA)

Subroutine to update an area and its parameters.

STRUCTURE /AREA_TYPE/

INTEGER MIN-HOR,MAXHOR

INTEGER MINVER, MAXVER

INTEGER NUM_PIX
INTEGER COLOR

END STRUCTURE

RECORD /AREA_TYPE/ AREA(7000)

INTEGER AREA_NUM, IVAL

IVAL=AREA_NUM

IF ((AREA(IVAL) .MINHOR) .GT.J)

IF ((AREA(IVAL) .MAXHOR) .LT.J)
IF ((AREA(IVAL) .MAXVER) .LT.I)

AREA (IVAL) .NUM_PIX=AREA (IVAL) .NUM P IX+ 1
END

AREA (IVAL) .MINHOR=J

AREA (IVAL) .MAXHOR=J

AREA (IVAL) .MAXVER=I

Appendix B

32

C

C

C
C

C

C

C
C

C

C

C-

C

C

C

C

DET_VECT.FOR

This program takes particle location data (formatted output
from PART_ID.FOR) and compiles likely vector matches.

It reads sequential matching parameters from a file

VECTCONTROL.DAT, and will attempt a 3 point match directly

(1->2->3). Output is directed to FOR090.DAT (vectors) and

FOR099.DAT (summary).

The structure /SORTED_AREA_TYPE/ is used to hold the particle

information found from PART_.ID.FOR. The array SA(4,1000)

is of /SORTED_AREA_TYPE/. The first element in the array (1-4)

C indicates the 'grey' of the particle, while the second is that

C particles relative location within its own sorted list. Because

of the nature of the particle identification, the particles are

already roughly sorted from top to bottom by Yc, where Xc and

Yc are located particle centers.

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

NEXT is an integer pointer to the element in the next grey

that would be the particle immediately above the current Yc of
the current color. AVAIL is a flag to indicate the particle

has or has not been matched. LINK is an integer pointer at

the next particle in a vector, ie to the next color. Because

the algorithm is checking 1 --> 2 --> 3, if AVAIL is false

(ie 0) for SA(l,any), then SA(I,,any).LINK has some non-zero

value, and SA(I,SA(2,any).LINK).LINK also has some non-zero

value (since a three-point match is required).

STRUCTURE /SORTED_AREA_TYPE/

REAL XC,YC

INTEGER NI/M_PIX

INTEGER NEXT, AVAIL,LINK,ACT
INTEGER ICNTVC

END STRUCTURE

RECORD /SORTED_AREA_TYPE / SA (4,1000) ,SA_TWO (4,1000),

1 SA_CORRECT (4,1000)
CHARACTER*20 FILENAME

CHARACTER*30 FILEVC

INTEGER I,J, I2,J2,I3,J3,COUNT(4),MAXDIS,DIRECT, ICNTVC

REAL TOLV,TOLR, BEST_TOLR, BEST_TOLV, BEST_TEST, BEST_XPTP,WF

INTEGER BEST_MAXDIS,SUPERPASS

To prevent data corruption, data file outputs from PARTICLE_ID
were renumbered to whatever seemed appropriate at the time.

FOR008, FOR031, FOR041, and FOR051 were all commonly used;

this program is not limited to these values.

WRITE(6,671)

33

671

672

FORMAT(' Enter IO number for particle data')

WRITE(6,672)

FORMAT(' (8 for NASA, 51 for TURB, 31 for SIMULL',
1 ' and 41 for SIMULR)')

READ(5,*) I02
C

C At one point, the various iterations were being sent

C to separate IO values. These IO values were being
C recorded in FOR001.DAT, so later consolidation could be
C done. This statement is almost useless without

C the separation of IO values, but required for operation
C of the consolidation programs (ie, VECTORT.FOR).

C Writing IO2 to FOR001.DAT lets VECTORT.FOR know what
C data file is being consolidated (changing output file names

C correspondingly).
C

C

C

C

C
C

C

C

C

C

C
4O

WRITE (i, i010) I02

Read in particle data.

Note secondary arrays, SA_TWO and SA_CORRECT. SA_TWO is

reserved for backwards (in the list) matching, and SA_CORRECT
is reserved for matches between SA and SA_TWO

DO I=l, 4
DO J=l, 1000

SA(I,J). LINK=0

SA_TWO (I, J). LINK=0

SA_CORRECT (I, J). LINK=0

SA(I, J) .ACT=0

SA_TWO (I, J).ACT= 0

SA_CORRECT (I, J). ACT=0
END DO

END DO

Read in data point (format given in PARTICLE_ID).

READ (IO2, *) I, COL, XC, YC

IF (IO2.EQ.31) COL=COL-I

IF (I.EQ.0) GOTO 30

COUNT (COL) =COUNT (COL) +i
X=COL

Y=COUNT (COL)

SA(X,Y) .XC=XC

SA (X, Y). YC=YC

SA (X, Y) .NUM_PIX=NUM

SA_TWO (X, Y) .XC=SA (X, Y) .XC

SA_TWO (X, Y). YC=SA (X, Y). YC

SA_TWO (X, Y) .NUM_PIX=SA (X, Y). NUM_PIX

IF (X.EQ.4) GOTO 20

SA (X, Y). NEXT=COUNT (COL+I)

34

20

30
c
c
c
c

505O
c
c
C
c
c
c
c
c
c
c
C
C
c
c
C
c

SA_TWO(X, Y) .NEXT=SA(X, Y) .NEXT
SA(X, Y). AVAIL=I
SA(X, Y) .LINK=0
SA(X, Y) .ACT=I
SA_TWO(X, Y) .AVAIL=SA (X, Y). AVAIL
SA_TWO(X, Y). LINK=SA (X, Y). LINK
SA_TWO(X, Y) .ACT=SA(X, Y) .ACT
GOTO40
CONTINUE

Vector determination. Tolerances are set by the
file VECTCONTROL,which has one line per iteration.

IO=90
WRITE(I,1010) IO
ITER=0
TYPE*,'Do you want preset VECTCONTROL.DATinfo? (i/0)'
READ(5,*) IVC
FILEVC='VECTCONTROL.DAT'
IF (IVC.NE.I) THEN

TYPE*,'Please enter control file data name',
1 ' (usually VECTCONTROL.DATor FOR003.DAT)'

READ(5,5050) FILEVC
END IF

FORMAT(A30)

Read in VECTCONTROLfile, which contains the parameters
needed for particle vector matching. Each line in
vectcontrol is executed sequentially on the particle list.
Order of parameters is TolV, TolR, and MAXDIS. The
file must end with the line, "0.0 0.0 0"

Sample VECTCONTROL.DAT file:

0.5 0.5 i0

0.5 0.5 20

0.5 1.0 30

0.5 1.5 30

0.0 0.0 0

ICNTVC=0

C

C Superpass is an integer counter; basically, VECTCONTROL.DAT
C is opened twice; in the regular mode, the forward/backwards

C error correction is in place. In the superpass mode, the

C error correction is disabled. Superpass is implemented

C after the error correction, under the premise that at that

C point, the number of tracks are so few that overlap (and
C hence error and the need for error correction) is diminished.

C

35

734

5555

777

i010

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUPERPASS=0

SUPERPASS=SUPERPASS+I

OPEN(UNIT=2,FILE=FILEVC,STATUS='OLD')

TYPE*,' '

TYPE*,'Iteration ',ICNTVC+I

CONTINUE

ICNTVC=ICNTVC+I

READ(2,*) TOLV, TOLR,MAXDIS

FORMAT(I4)

IF (TOLV.EQ.(0.0)) THEN
IF (SUPERPASS.EQ.I) THEN

CLOSE(UNIT=2)

GOTO 734
ELSE

GOTO 778

END IF

END IF

ITER=ITER+I

Main routine for matching. Every iteration reduces the

eligible particles for matching, so VECTCONTROL can use
less and less restrictive parameters.

DIRECT=I for forward match (SA), DIRECT=-l for backward

match (SA_TWO).

DIRECT=I

CALL DO_VECT(COUNT, SA, TOLV, TOLR,MAXDIS,

1 DIRECT, ICNTVC)

Record keeping; for simulated images, accurate
determination of correct and incorrect matching can

be done. For non-simulated images, you can only gather

matched/unmatched percentages.

All percentages are based on the number of grey=l particles

initially present.

TALLYVECT output is sent to the appropriate file.

CALL TALLYVECT(SA,COUNT(1),ICNTVC, I,TOLV,TOLR,MAXDIS)

Backwards matching (SA_TWO, DIRECT=-1).

DIRECT=- 1

CALL DO_VECT (COUNT, SA_TWO, TOLV, TOLR, MAXDIS,

1 DIRECT, ICNTVC)

Tally up number found

CALL TALLYVECT (SA_TWO, COUNT (1),ICNTVC, 2, TOLV, TOLR, MAXDI S)

36

C
C Time to start filling SA_CORRECT. This is done by comparing

C vector matches made in SA and SA_TWO; if they agree, they are

C considered correct and the entry made in SA_CORRECT. If they

C do not agree, the particles are made available for further

C matching.

C

IF (SUPERPASS.EQ.I) THEN
DO I=I,COUNT(1)

C
C Check that the match was made in the most recent iteration

C (otherwise already accounted for)...
C

IF (SA(I,I).ICNTVC.EQ.ICNTVC) THEN

C

C Check that Ith particle is matched...
C

1

IF ((SA(I,I) .LINK.NE.0) .AND. (SA_TWO(I,I) .LINK.NE.0))

THEN

C

C Check if Ith particles are equivalent...

C SA_CORRECT.
C

C

C

C

if so, update

1

2

1

1

1

1

IF ((SA(I, I) .LINK.EQ.SA_TWO(I, I) .LINK) .AND.

(SA(2, SA(I, I) .LINK) .LINK.EQ.

SA_TWO (2, SA_TWO (i, I) .LINK) .LINK)) THEN

SA_CORRECT (i, I) .LINK=SA (i, I) .LINK

SA_CORRECT (i, I). ACT=SA (i, I) .ACT

SA_CORRECT (i, I) .ICNTVC=SA (i, I). ICNTVC
SA_CORRECT(2, SA(I, I) .LINK) .LINK=SA(2, SA(I, I)

•LINK). LINK

SA_CORRECT (2 ,SA(I, I) .LINK) .ACT=SA(2, SA(I, I)

•LINK). ACT

SA_CORRECT(3, SA(2, SA (i, I) .LINK) .LINK) .ACT=

SA(3, SA(2, SA(I, I) .LINK) .LINK) .ACT

SA_CORRECT(3, SA(2, SA (I, I) .LINK) .LINK) .LINK=

SA(3,SA(2,SA(I,I) .LINK) .LINK) .LINK
END IF

END IF

END IF

Update SA array for bad matches...

IF ((SA(I, I) .LINK.NE.0) .AND. (SA(I, I) .ICNTVC.EQ.ICNTVC)

•AND. (SA_CORRECT (i, I) .LINK. EQ. 0)) THEN

SA(3, SA(2, SA(I, I) .LINK) .LINK) .AVAIL=I

SA(2, SA(I, I) .LINK) .LINK=0

SA(2, SA(I, I) .LINK) .AVAIL=I

SA (I, I) .LINK=0

SA(I, I) .ICNTVC=0

SA(I, I) .AVAIL=I

37

C

C

C

C

C

C

END IF

Update SA_TWO array for bad matches...

IF ((SA_TWO (I, I) .LINK.NE.0) .AND. (SA_TW0 (i, I) .ICNTVC

.EQ. ICNTVC) .AND. (SA_CORRECT(I, I) .LINK.EQ. 0)) THEN

SA_TWO (3, SA_TWO (2, SA_TWO (i, I). LINK). LINK). AVAIL= 1

SA_TWO (2, SA_TWO (i, I) .LINK) .LINK=0

SA_TWO (2, SA_TWO (i, I). LINK). AVAIL= 1

SA_TWO (I, I). LINK=0

SA_TWO (i, I). ICNTVC=0
SA_TWO (l, I). AVAIL=I

END IF

END DO

ELSE

DO I=l, COUNT (i)

IF (SA(I,I).ICNTVC.EQ.ICNTVC) THEN

Check that Ith particle is matched..•

IF (SA_TWO(I,I).LINK.NE.0) THEN

SA_CORRECT (i, I) .LINK=SA (i, I) .LINK

SA_CORRECT (i, I) .ACT=SA (i, I) .ACT
SA_CORRECT (i, I) .ICNTVC=SA (i, I) .ICNTVC

SA_CORRECT (2, SA (

•LINK). LINK

SA_CORRECT (2, SA (
.ACT

SA_CORRECT (3, SA (

SA(3, SA(2, SA(

SA_CORRECT (3, SA (

i, I) .LINK) .LINK=SA(2, SA(I, I)

i, I) .LINK) .ACT=SA(2, SA(I, I) •LINK)

2, SA(I, I) .LINK) .LINK) .ACT=
i, I) .LINK) .LINK) .ACT

2, SA(I, I) .LINK) .LINK) .LINK=

SA(3, SA(2, SA(I, I) .LINK) .LINK) •LINK

ELSE IF (SA_TWO(I,I).LINK.NE.0) THEN

SA_CORRECT (i, I) .LINK=SA_TWO (I, I) .LINK

SA_CORRECT (i, I).ACT=SA_TWO (I, I) .ACT

SA_CORRECT (i, I). ICNTVC=SA_TWO (i, I). ICNTVC

SA_CORRECT (2, SA_TWO (i, I). LINK). LINK=SA_TWO (2,

SA_TWO (i, I). LINK). LINK

SA_CORRECT (2, SA_TWO (i, I) .LINK) .ACT= SA_TWO (2,

SA_TWO (I, I). LINK). ACT

SA_CORRECT (3, SA_TWO (2, SA_TWO (i, I) .LINK) .LINK)

.ACT=SA_TWO (3, SA_TWO (2, SA_TWO (i, I). LINK)
•LINK). ACT

SA_CORRECT (3, SA_TWO (2, SA_TWO (i, I). LINK) .LINK)

.LINK=SA_TWO (3, SA_TWO (2, SA_TWO (i, I) .LINK)

.LINK). LINK
END IF

END IF

IF ((SA(I, I) .LINK.EQ.0) .AND. (SA(I, I) .ICNTVC.EQ. ICNTVC)

.AND. (SA_TWO(I,I) .LINK.NE.0)) THEN

SA(3, SA(2, SA(I, I) .LINK) .LINK) .AVAIL=SA_TWO (3,

38

C

C

C

C

C
C

C

C

C

C

C

SA

SA

SA

SA

SA

END

SA_TWO (2, SA_TWO (i, I) .LINK) .LINK) .AVAIL

(2, SA (i, I) .LINK) .LINK=SA_TWO (2, SA_TWO (i, I) .LINK)
.LINK

(2, SA (i, I). LINK). AVAIL=SA_TWO (2, SA_TWO (i, I)

.LINK) •AVAIL

(I, I) .LINK=SA_TWO (i, I) .LINK

(I, I) .ICNTVC=SA_TWO (I, I) .ICNTVC

(i, I) .AVAIL= SA_TWO (i, I) .AVAIL
IF

Update SA_TWO array for bad matches...

1

1

1

1

END

IF ((SA_TWO (I, I) .LINK.EQ.0) .AND. (SA_TWO (i, I) .ICNTVC

.EQ.ICNTVC).AND. (SA(I,I) .LINK.NE.0)) THEN

SA_TWO (3, SA_TWO (2, SA_TWO (i, I). LINK). LINK) .AVAIL=
SA(3, SA(2, SA(I, I) .LINK) .LINK) .AVAIL

SA_TWO (2, SA_TWO (I, I) .LINK) .LINK=SA (2, SA (i, I) .LINK)
•LINK

SA_TWO (2, SA_TWO (i, I) .LINK) .AVAIL=SA (2, SA (i, I) .LINK)
•AVAIL

SA_TWO (i, I). LINK=SA (I, I). LINK

SA_TWO (i, I). ICNTVC=SA (i, I). ICNTVC

SA_TWO (i, I). AVAIL=SA (i, I). AVAIL

END IF

END DO

IF

Determine %'s based on cumulative tracking/combination.

CALL TALLYVECT (SA_CORRECT, COUNT (1),ICNTVC, 3,

1 TOLV, TOLR, MAXDIS)

Final piece of information: determine %'s based on most
iteration�combination, non-cumul. Algorithm similar to

TALLYVECT.

recent

INOT_FOUND=0

IWRONG = Q
ITHREE_PT=0

ICNTNEW=0

DO I=I,COUNT(1)

IF ((SA(I,I).ICNTVC.EQ.ICNTVC).OR.(SA(I,I).ICNTVC.EQ.0))
1 THEN

ICNTNEW=ICNTNEW+I

IF ((SA_CORRECT(I,I).LINK).EQ.0) THEN

INOT_FOUND=INOT_FOUND+I
ELSE

IA=SA_CORRECT(I,I).ACT

IB=SA_CORRECT(2,SA_CORRECT(I,I).LINK).ACT

IC=SA_CORRECT(3,SA_CORRECT(2,SA_CORRECT(I,I).LINK)

1 .LINK).ACT

39

561

IX=SA_CORRECT (I, I) .LINK

IY=SA_CORRECT (2, IX) .LINK
WRITE (IO,120) I,IA, IB, IC,SA(I,I) .XC,SA(I,I) .YC,

1 SA(2, IX) .XC, SA(2, IX) .YC, SA(3, IY) .XC, SA(3, IY) .YC

IF ((IA.EQ.IB) .AND. (IB.EQ.IC)) THEN

ITHREE_PT= ITHREE_PT+ 1

ELSE
IWRONG =IWRONG + 1

ENDIF

END IF

ENDIF

END DO

IF (ICNTNEW.NE. 0) THEN
XPNF=FLOAT (INOT_FOUND) *I00.0/FLOAT (ICNTNEW)

XPTP=FLOAT (ITHREE_PT) *100.0/FLOAT (ICNTNEW)
XPWR=FLOAT (IWRONG)*100 .0/FLOAT (ICNTNEW)

WRITE (99 ,561) ITER, MAXDI S, TOLV, TOLR, XPNF, XPTP, XPWR, ICNTNEW
WRITE (6,561)ITER, MAXDIS ,TOLV, TOLR, XPNF, XPTP, XPWR, ICNTNEW

END IF

GOTO 777

FORMAT(' Iteration ',I3,' MAXDIS- ',I4,' TOLV- ',F5.2,

1 ' TOLR- ',F5.2,/,' Not Found- ',F6.2,/,

2 ' Three - ',F6.2,/,' Wrong - ',F6.2,

3 ' (Combined track), ', ' for ',I4, ' remaining tracks')

C

C Out of loop. Write final values to output and end.
C

778 WRITE (i, I010) 0
C

C Final record-keeping is to output all non-matched particles to

C an output file (FOR020.DAT is used here).

C

120

IO_NF=20

DO I=l, COUNT (i)

IF (SA(I,I).AVAIL.EQ.I) THEN

WRITE (IO_NF, 320) 1,3,SA(I,I) .XC,SA(I,I) .YC,SA(I,I) .ACT
ELSE

WRITE(IO,120) I,SA(I,I) .ACT, SA(2,SA(I,I) .LINK) .ACT,

1 SA(3, SA(2, SA(I, I) .LINK) .LINK) .ACT, SA(I, I) .XC,
2 SA(I,I) .YC,SA(2,SA(I,I) .LINK) .XC,SA(2,SA(I,I)

3 .LINK) .YC, SA(3, SA(2, SA(I, I) .LINK) .LINK) .XC,

4 SA(3, SA(2, SA(I, I) .LINK) .LINK) .YC

END IF

END DO

WRITE (IO, 120) 0,0,0,0,0.0,0.0,0 .0,0.0,0.0,0 .0

FORMAT(' ',418,6FI0.2)

DO I=l, COUNT (2)

IF (SA(2,I) .AVAIL.EQ.I) WRITE(IO_NF,320) 1,2,SA(2,I) .XC,

1 SA(2, I) .YC,SA(2, I) .ACT
END DO

DO I=l, COUNT (3)

4O

320

IF (SA(3,I).AVAIL.EQ.I) WRITE(IO_NF,320)

1 SA(3, I) .YC,SA(3,I) .ACT

END DO

WRITE (IO_NF, 320) 0,0,0.0,0.0

FORMAT(' ' ,218,2FI0.2, I8)

1,3,SA(3,I) .XC,

STOP

END

4]

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

SUBROUTINE DO_VECT (COUNT, SA, TOLV, TOLR, MAXDIS,

1 DIRECT, ICNTVC)

Subroutine that does the grunt work of particle matching,

using the parameters passed from the main program.

STRUCTURE /SORTED_AREA_TYPE/

REAL XC,YC

INTEGER NIIM_PIX
INTEGER NEXT, AVAIL,LINK,ACT

INTEGER ICNTVC

END STRUCTURE

RECORD /SORTED_AREA_TYPE/ SA(4,1000)

INTEGER COUNT(4),DJ,DK, DL,DIRECT,DI,ICNTCV, ISWITCH

Set tolerances and limits (passed variables)

TOLR is maximal radial change in vector (in radians)

TOLV is maximal magnitude change in vector (as fraction of

average vector magnitude)
MAXDIS is maximum displacement frame-to-frame of particles

250

Begin main loop, on grey=4. Start at 1 and go to end.

Do not match grey=2 or above if grey=l particle is not
available.

ISWITCH=0

IF (DIRECT.EQ.I) THEN
IDI=I

ID2=COUNT(1)

DI=I

ELSE

IDI=COUNT(1)
ID2=I

DI=-I

END IF

DO 110 I=IDI,ID2,DI

IF (SA(I,I).AVAIL.EQ.0) GOTO ii0

Switching parameters. A double-switching search is used;
initial search is in the above direction (ie start at

SA(I,I).NEXT and decrement back to I), and switches to the

below direction (start at SA(I,I).NEXT+I and increment up

to max) if no match is found.

IF (DIRECT.NE.I) GOTO 50
DJ=-I

I3=i

I2=SA(I,I).NEXT+I

IF (I2.GT.COUNT(2)) I2=COUNT(2)
GOTO 60

42

5O

c
c
c

DJ=I
13=COUNT(2)
I2=SA(I, I) .NEXT
IF (I2.LT.I) I2=i

Main grey=2 loop.

6O
C
C
C

C
C
C

C
C
C
C

C

C

C

280

80

C

C
C

DO 20 J=I2,I3,DJ

Check availability. Also check MAXDIS (quickest elimination).

IF (SA(2,J).AVAIL.EQ.0) GOTO 20
DYI- (SA(I, I) .YC-SA(2, J) .YC)

IF (ABS(DYI).GT.MAXDIS) GOTO i0

DXI= (SA(I, I) .XC-SA(2, J) .XC)

IF (ABS(DXl) .GT.MAXDIS) GOTO 20

DVl =SQRT (DXl *DXl +DYI *DYI)

IF (DVI.EQ.0) GOTO 20

DVI rep. 1->2 vector

IF (DJ.EQ.I) GOTO 80

Switching parameters for the grey=3 loop, following the

same procedure as for grey=2. It is likely that the

grey=3 particle is in the same direction as grey=2, and
this direction is checked first. ISWITCH is used to

reverse the grey=3 track locally.

DK=-I

J3=l

J2=SA(2, J) .NEXT+I

IF (J2.GT.COUNT(3)) J2=COUNT(3)
GOTO 70
DK=I

J3 =COUNT (3)

J2=SA(2, J) .NEXT

IF (J2.LT.I) J2=l

Main grey=3 loop.

70

C

C

C

DO 30 K=J2,J3,DK

Check availability. Check MAXDIS for quick elimination.

IF (SA(3,K).AVAIL.EQ.0) GOTO 30

DY2=(SA(2,J).YC-SA(3,K).YC)

IF (ABS(DY2).GT.MAXDIS) GOTO 31

DX2= (SA(2, J) .XC-SA(3, K) .XC)

IF (ABS(DX2).GT.MAXDIS) GOTO 30

DV2=SQRT(DX2*DX2+DY2*DY2)

43

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

30

31

20

i0

DV2 rep. 2->3 vector

IF (DV2.EQ.0) GOTO 30

Check TolV...

IF (ABS((DV2-DVI) / ((DV2+DVI)/2)) .GT.TOLV) GOTO 30

Check TolR (note 'heavy' calculations).

IF (DYI.GT.0) THEN

DRI=ACOS(DXI/DVI)

ELSE

DRI=2*3.14159-ACOS(DXl/DVl)
ENDIF

IF (DY2.GT.0) THEN

DR2=ACOS(DX2/DV2)
ELSE

DR2=2*3.14159-ACOS(DX2/DV2)

ENDIF

IF (ABS(DR2-DRI).GT.TOLR) GOTO 30

At this point a three-point match exists, 1 --> 2 --> 3.

Set the appropriate linkages and availability flags, and
check whether a fourth-point match is required. 4 point

matching tends to significantly reduce matching, and is

not used.

SA(3, K) .AVAIL=0

SA(2, J) .LINK=K

SA(2, J) .AVAIL=0

SA(I, I) .LINK=J

SA(I, I) .AVAIL=0

SA(I,I).ICNTVC=ICNTVC
ISWITCH=0

GOTO Ii

CONTINUE

IF (ISWITCH.EQ.I) THEN
ISWITCH=0

GOTO 20

ELSE
ISWITCH=I

IF (DJ.EQ.I) THEN
GOTO 280

ELSE

GOTO 80

END IF

END IF

CONTINUE

IF (DIRECT.EQ.DJ) GOTO ii

ii
ii0

IF (DJ.EQ.I) GOTO250
GOTO50
CONTINUE
CONTINUE

RETURN
END

C
C
C

SUBROUTINETALLYVECT(SA, IEND, ICNTVC, NUMB,TV, TR, MD)

Subroutine to output some simple stats on matched particles

STRUCTURE/SORTED_AREA_TYPE/
REAL XC,YC

INTEGER NUM_PIX
INTEGER NEXT, AVAIL,LINK,ACT

INTEGER ICNTVC

END STRUCTURE

RECORD /SORTED_AREA_TYPE/ SA(4,1000)

INTEGER IEND, ICNTVC,NUMB,MD, IO

REAL TV, TR

571

INOT_FOUND=0
IWRONG=0

ITHREE_PT=0

IFOUR_PT=0

DO I=I,IEND

IF ((SA(I,I).LINK).EQ.0) THEN

INOT_FOUND=INOT_FOUND+I
ELSE

IA=SA(I, I) .ACT

IB=SA(2, SA(I, I) .LINK) .ACT

IC=SA(3, SA(2, SA(I, I) .LINK) .LINK) .ACT

IX=SA(I, I) .LINK

IY=SA(2, IX) .LINK

IF ((IA.EQ.IB).AND.(IB.EQ.IC)) THEN

ITHREE_PT=ITHREE_PT+I
ELSE

IWRONG=IWRONG+I

END IF

ENDIF
END DO

XPNF=FLOAT(INOT_FOUND)*I00.0/FLOAT(IEND)

XPTP=FLOAT(ITHREE_PT)*I00.0/FLOAT(IEND)

XPWR=FLOAT(IWRONG)*I00.0/FLOAT(IEND)

IF (NUMB.EQ.I) THEN

WRITE(99,571)ITER,MD, TV, TR, XPNF,XPTP, XPWR, IEND

WRITE(6,571)ITER,MD,TV, TR,XPNF,XPTP, XPWR, IEND
END IF

IF (NUMB.EQ.2) THEN

WRITE(99,572)ITER,MD,TV, TR,XPNF,XPTP, XPWR, IEND

WRITE(6,572)ITER,MD,TV, TR, XPNF,XPTP, XPWR, IEND
END IF

IF (NUMB.EQ.3) THEN
WRITE(99,573)ITER,MD, TV, TR, XPNF,XPTP,XPWR, IEND

WRITE(6,573)ITER,MD,TV, TR,XPNF,XPTP,XPWR, IEND
END IF

FORMAT(' Iteration ',I3,' MAXDIS - ',I4,' TOLV -

1 ' TOLR - ',F5.2,/,' Not Found - ',F6.2,/,

' F5 2
l • I

572

573

46

2 ' Three - ',F6.2,/,' Wrong - ',F6.2,

3 ' (Forward track),' ' all ',I4,' tracks')
FORMAT(' Iteration ',I3,' MAXDIS - ',I4,' TOLV - ',F5.2,

1 ' TOLR - ',F5.2,/,' Not Found - ',F6.2,/,

2 ' Three - ',F6.2,/,' Wrong - ',F6.2,

3 ' (Backward track),',' all ',I4,' tracks')
FORMAT(' Iteration ',I3,' MAXDIS - ',I4,' TOLV - ',F5.2,

1 ' TOLR - ',F5.2,/,' Not Found - ',F6.2,/,

2 ' Three - ',F6.2,/,' Wrong - ',F6.2,

3 ' (Combined track),',' all ',I4,' tracks')
RETURN

END

Appendix C

A Kodak Company

CCD Camera
For High Resolution

Applications

The VIDEK MEGAPLUS TM Camera

Feature

• 1320 H x 1035 V pixel format

• Square p!xels

• 100% fill
(No space between pixels)

• Digital output

Benefit

4 times greater resolution than other
"Hi-Res" solid-state cameras

Accurate and simplified dimensional
measurements in any direction

5 to 10 times improvement in sub-pixel
measu rement acu racy

Maximizes signal-to-noise ratio

+ ORIGINAL PAGE iS •

4MEG VIDEO+Model10
Flexible Image Processorand Application Accelerator For The PC/AT

video blanking intervals to maintain an uninterrupted display.

4MEB VI_£O Model 10 _twam _pporl

4MEG VIDEO Model 10 Is supported by driver software that
allows easy application development by OEMs and VARs.
A driver subroutine library (4MDRIVER) simplifies control of
the board from programs written in C or other high-level
languages. The library Is easy to use; familiarity with
structures, polnters, etc. Is not required for fundamental
operatlons.

An optional, interactive, menu driven program (4MIP) allows
Immediate access to 4MEG VIDEO Model 10 functionality.
4MDRIVER functions and Image processing routlnas can be
Invoked via a mouse Interface. 4MIP also allows the user to
save sequences of operations in command files that can be
re-executed on demand.

To develop Ioadable routines for the TMS320C25, standard
macro-assembler development tools from Texas Instruments
or Avocet Systems, Inc. can be employed. 4MDRIVER and
4MIP facilitate downloading of user-developed programs.

@1989 EPIX INC. EPIX and 4MEG VIDEO are trademarks of EPIX, INC.

PC/AT is a trademark of IBM CORP,

Optlone I :
• VIDEK MEGAPLUS camera Interface card
• 16 input video multiplexor card
• Reticon camera interface (third party)

4MEg kTDEO_ 10 _oftwan;

4MDRIVER end 4MIP

• Simple-to-use functlone/subroutlnee
• Image capture and display
• Adjustable video formats

- resolution - blanking intervals
- interlaced/noninterlaced - Serration/equalizatlon

• Selectable timing source
• Split screen digitize/display
• Integer zoom (1-30X) • Pan, Scroll
• TMS320C25 convolution, image sequence average

and difference

4MIP Only

+ PC-based image processing
Arithmetic/logic functions - Convolution
Temporal average - Inter-Image operatlons
Contrast enhancement

• Real-Time motton analysis
• Histogram display • Command file training/replay
• Disk File I/O • Image Printing

PIX
TM

310 Anthony Trail, Northbrook, Illinois 60062 U.S.A.
Phone (312) 498-4002 Fax (312) 498-4321

1 APR 8g

GATEWAY 2000
33MHZ 486 CACHE

DESKTOP
64K SRAM CACHE (25NS)

8 MB DRAM (70 NS SIMMS)
EXPANDABLE TO 64MB . ,-

1.2 MB 5 1/4" DRIVE (EPSON)
1.44 MB 3.5" DRIVE (EPSON)

200 MB IDE WESTERN DIGITAL (15MS) i0 M/BITS DTR
W/64K MULTI SEGMENTED CACHE BUFFER

DIAMOND SPEEDSTAR 16 BIT VGA BOARD W/IMB (1024 X 768)
14" GATEWAY 2000 NON-INTERLACED 1024 CRYSTAL SCAN MONITOR (1024 x 768)

1 PARALLEL PORT/2 SERIAL PORTS
GATEWAY 2000 I01 KEY KEYBOARD

MICROSOFT WINDOWS 3.0/MICROSOFT MOUSE
- DOS 4.01 OR 3.3

• WEITEK SOCKET/CLOCK/CALENDAR
-- PHOENIX BIOS

i : PRICE: $3995.00 =
• : t ... • " "

HARD DRIVE OPTIONS:

40 MB IDE WESTERN DIGITAL (17MS) 10 M/BITS DTR
SUBTRACT: $ 525.00

SUBTRACT: $ 400.00

SUBTRACT: S 200.00

SUBTRACT: $ 300.00

ADD: $ 250.00

ADD: S 750.00

ADD: $1250.00

SUBTRACT: $ 425.00
SUBTRACT: S 250.00

ADD: $ 225.00
ADD: $ 250.00
ADD: S 800.00
ADD: $1900.00

ADD: $ 150.00
ADD: $ 295.00
ADD: $ 100.00

ADD: $ 600.00
ADD: $ 295.00
ADD: $ 425.00

W/32K READ-LOOK-AHEAD CACHE BUFFER
80 MB IDE WESTERN DIGITAL (17MS) 10 M/BITS DTR

W/32K READ-LOOK-AHEAD CACHE BUFFER
110 MB ESDI MICROSCIENCE (18MS) 10 M/BITS DTR

W/32K ULTRASTOR CACHE CONTROLLER
120 MB IDE SEAGATE (18MS) i0 M/BITS DTR

W/32K READ-LOOK-AHEAD CACHE BUFFER

150 MB ESDI SEAGATE (17MS) 10 M/BITS DTR
W/32K ULTRASTOR CACHE CONTROLLER

300 MB ESDI SEAGATE (17MS) i0 M/BITS DTR
W/32K ULTRASTOR CACHE CONTROLLER

650 MB ESDI SEAGATE (17MS) 10 M/BITS DTR
W/32K ULTRASTOR CACHE CONTROLLER

MONITOR OPTIONS:
12" SAMSUNG MONOCHROME
14" SAMSUNG VGA MONOCHROME

14" NEC 3D
14" SONY 1304
16" NANAO 9070U
20" MITSUBISHI 6935
OTHER OPTIONS:
VERTICAL CASE
120 MB TAPE BACK UP
2400 BAUD ATI INTERNAL MODEM
UPGRADE TO 16 MB

KX-P1124 PANASONIC PRINTER (INCLUDES CABLE)

KX-PI624 PANASONIC PRINTER (INCLUDES CABLE)

MASTER CARD, VISA, AMERICAN EXPRESS, DISCOVER (NO SURCHARGE)
C.O.D. CASHIER'S CHECK ACCEPTABLE (CONTINENTAL USA)
SHIPPING: (2 DAY DELIVERY) $95.00 IN THE CONTINENTAL USA
APO SHIPPING: $125.00
FULL LINE DISTRIBUTOR - PLEASE CALL FOR OTHER CONFIGURATIONS

6!0 GatewayDrive• North Sioux City, South Dakota 57049
Telephone605-232-2000- Fax 605-232-2023 • Toll Free 800-523-2000

Micro NDP-386
INay COMPILERS

NDP Fortran-386" Optimized FORTRAN 77 with VAX/VMS, UNIX BSD 4.2, and MIL

STD-1753 Extensions for 80386-based Systems

NDP Fortran-386 is a globally optimizing compiler that
has been developed at MicroWay for the Intel 80386. It
generates native 80386 code that runs in protected mode
under UNIX 386 System V Release 3, SCO XENIX Release
2.3, and Phar Lap extended DOS. Separate releases are
available for each operating system. The execution speed of
code generated by NDP Fortran-386 is exceptionally fast.
Recompiling existing 16-bit 80286 compiler code withthe 32-
bit NDP Fortran-386 can increase the speed of execution by
200-500%. When the MicroWay roW1167 orthe Weitek 3167
numeric coprocessor is added, performance of the NDP
Fortran-386 equals that of a VAX 8600, or 60 times the speed
of an IBM PC.

NDP Fortran-386 makes it possible to pert mainframe
FORTRAN applications to your 80386 machine that use as
much memory as your system will hold: the upper limit on
segment size in the linear address mode is 4 gigabytesl

The compiler generates code which optionally utilizes
the Phar Lap Virtual Memo_/Manager, making it possible for
a two megabyte 80386 system to run programs that are as
large as the free memory on your hard disk! The compiler also
supports any of five possible coprocessors for which your
80386 system is socketed, including the MicroWay mW1167,
Weitek 3167, Inte180387 and 80287, and Cydx 83D87. The
mW1167 provides two to four times the throughput of an
80387 as measured by popular benchmarks.

NDP Fortran-386 is a full implementation of FORTRAN
77 and includes the extensions needed to write new
applications or port existing ones. These include the popular
FORTRAN 66 extensions to FORTRAN 77, plus features
added by the UNIX f77 portable FORTRAN compiler
(including UNIX BSD 4.2 features), D.O.D., and DOS
FORTRAN compilers. NDP Fortran-386 compiles most
FORTRAN 66 and 77 applications without modification.

NDP Fortran'386 v.2.0 Features:

• 98% compatible with VAX/VMS extensions, including
"NAMELIST."

• Incorporates several new optimizations, including loop
unrolling, repeat common subexpression elimination,
register caching, and peephole optimization.

• Includes a command line switch to allow the compiler to
run in virtual memory.

• NDP-386 Virtual Memory option allows executable
programs to run in virtual memory using the Phar Lap
Virtual Memory Manager.

• Generates programs, procedures, and arrays limited
only by the amount of memory in the system, up to 4
gigabytes.

• Exceptional runtime speed due to global optimizations,
sophisticated register utilization to store 32-bit entities,
use of inline 32-bit arithmetic instead of library calls, and
the effective doubling of the system data bus.

• Simplifies the porting of existing applications by fully
implementing FORTRAN 77 (full language) as specified
by ANSI X3.9-1978, the D.O.D. supplement to
FORTRAN 77 (MIL STD-1753), and the documented
and undocumented extensions to the Berkeley 4.2 BSD
UNIX f77 compiler for VAX/VMS.

• Generates inline code for coprocessors which makes
excellent use of all numeric registers.

• Supports full 80387 and mWl167/3167 numeric
instruction sets, including 80387 inline transcendentals.

• Allows customized coprocessor exception handling
procedures to be designed and implemented bythe user.
(examples are provided)

• Includes a library of graphics and keyboard routines with
enhanced features that supports the CGA, MDA, EGA
VGA, and Hercules adapters. (DOS version only)

• Includes mouse support.
• Provides a trace facility to aid in debugging.
• Memory mapped devices and physical memory can be

mapped into the program's linear address space.
• NDP Fortran-386 can call or be called from NDP C-386

or NDP Pascal-386 programs. Assembly language
routines can be interfaced with compiled output.

• Thef77compilerdrivermakesitpossibletousethesame
switches for compiling, assembling, and linking when
working with DOS, UNIX V, or XENIX 2.3.

• Fast I/O feature in DOS version makes it possible to
specify the size and number of runtime buffers, resulting
in an I/O speed up that ranges up to 15 times faster.

• Can be used with the newest generation of Phar Laptools
to produce embedded and ROMable code.

• NDP Plot is an optional Calcomp-compatible package
including high-level plotting and 3-D graphics routines.

• NDP to Halo '88 Interface is an optional graphics
interface to Media Cybernetics Halo '88".

• NDP Hoops is an optional advanced object-oriented
graphics library.

P.O. BOX 79 • KINGSTON • MA 02364 • TELEPHONE (508) 746-7341 • FAX (508) 746-4678

Optimization Features:
The compiler converts the ASCII FORTRAN text one

procedure at a time into a memory-based operator tree.
During global optimization, this tree is traversed from 5 to 50
times depending upon the options selected and the structure
of the code. The primary goal of the global optimization is to
store variables in registers as opposed to memory.
Eliminating stores and loads to memory, on average, results
in code that runs a factor of 3 faster while taking only 1_ the

space of code which stores variables in memory. The global
analysis takes into account variable lifetime, activity, size,
and the benefits of using faster running 16-bit addressing
modes over the slower running 32-bit modes where possible.
The optimizer produces code which takes maximum
advantage of the registers available in the numeric
coprocessors that the compiler supports. The generation of
very highquality inline numeric code is one of the outstanding
features of the compiler.

The process of traversing the tree includes the
application of code transformations to the tree. These
transformations include numeric strength reduction, dead
code elimination, removal of loop invariant code from loops,
hoistingof common code out of blocks, constant propagation,
elimination of stack frame setup on procedure entry where

possible, conversion of small procedures into inline code
where possible, and a number of processor-related peephole
optimizations. Loop optimizations which make the code
larger but iaster can also be optionally performed. These
optimizations rearrange loops so that array base values are
computed outside of loops, andthen stored in registers where
they are used indirectly for addressing, and incremented,
when necessary. The optimizer also performs global
common subexpression elimination, caches array elements
in registers, and unrolls short "hot" loops into inline code.

VAX/VMS FORTRAN Extensions:

• Symbolic Names may be 31 characters long and contain
the $ character.

• Nested INCLUDES are allowed up to 10 levels.
• IMPLICIT UNDEFINED (A-Z) turns off IMPLICiTtyping.
• All MIL STD-1753 Binary and bit functions are supported

including IOR, lAND, IEOR, NOT, ISHFT, ISHFTC,
ISHFTL, ISHFTR, BTEST, IBSET, IBCLR, and MVBITS.
Bessel, Gamma, and error functions are also included.

• Z and O field descriptors allow octal and hexadecimal
editing of I/0 list items.

• Hollerith, hexadecimal, binary, and octal constants are
supported.

• One trip DO LOOPs compatible with FORTRAN 66 can
be optionally turned on.

• Free formatted input using commas is supported.
• The $ can be used to eliminate the carriage return that

normally follows a read or write.
• Conditional compiles are signaled in column 1by x, X, d,

or D. Continuation lines infree format are indicated by &.
• The mixing of numeric and character data types in

COMMON and EQUIVALENCE statements is allowed.

INTERNAL files are expanded from SEQUENTIAL only
to include DIRECT.
Types include REAL*4, REAL*8, INTEGER*l,
INTEGER*2, INTEGER*4, LOGICAL*l, LOGICAL*2,
LOGICAL*4, COMPLEX*8, and COMPLEX*16. Default
of LOGICAL and INTEGER is 4 but can be changed to 2.

Other Key Words:
ACCEPTstatement
ASSOCIATEVARIABLE
BUFFERCOUNT
BYTE data type
CARRIAGECONTROL
DATE and IDATE
DEFAULTFILE
DEFINE FILE
DELETE statement
DISPOSE
DO...WHILE, extendedrange
ENCODE andDECODE
EXIT
EXTENDSIZE
FIND statement
%LOC, %REF, %VAL
MAXREC
NAME

NAMELIST
NOSPANBLOCKS
OPTIONS statement
ORGANIZATION
PARAMETER statement
Q Editdescriptor
RAN
READONLY
RECORDSIZE
RECORDTYPE
REWRITE statements
SECNDS
STRUCTURE declaration
TIME
TYPE statement
USEROPEN
VOLATILE andVIRTUAL

statements

UNIX/C-Uke Features:

• Command line processing using getarg, iargc, and
getenv are supported.

• Strings may be declared with quotes orapostrophes, and
internal string members may be defined using backslash
editing identical to C.

• Upper and lower case are supported. For compatibility
with C, the compiler converts upper to lower except in
strings; a compile time option shuts off this conversion.

• AUTOMATIC and STATIC variables in procedures make
recursive procedures possible.

• Programs written with NDP Fortran-386 can call or be
called from NDP C or Pascal-386. Assembly language
routines can also be interfaced with the compiled output.

System Requirements:
• Any 80386-based system; or any PC, XT, AT, or

compatible with an Intel Inboard/386 or MicroWay
Number Smasher-386.

• A numeric coprocessor is not required to compile.
However, an Intel 80287 or 80387, Cyrix 83D87,
MicroWay mW1167, or Weitek 3167 coprocessor is
necessary to execute programs containing floating point
routines.

• Double-sided high density floppy drive.
• Hard disk drive with a minimum of two free megabytes.
• Two megabytes of extended memory (four megabytes

recommended).
• DOS version 3.2 or later as extended by Phar Lap

Development Tools (version 2.0 or later), UNIX 386
System V Release 3, or SCO XENIX Release 2.3.

GS-225-12g

Micro NDP-386
Ii ayy- COM-- -E-RS

NDP C-386"" Globally Optimizing,Native Code C Compiler

for the Intel, Cyrix, and Weitek Coprocessors

NDP C-386 is a globally optimizing compiler developed
at MicroWay for the Intel 80386. It generates native 80386
code that runs in protected mode under UNIX 386 System V
Release 3, SCO XENIX Release 2.3, and Phar Lap extended
DOS. NDP C-386 makes it possible to port mainframe C
applications to your 80386 that use as much memory as your
system will hold: the upper limiton segment size in the linear
address mode used is 4 gigabytes. The compiler also
supports the following coprocessors: Inte180287 and 80387,
Cyrix 83D87, MicroWay/Weitek mW1167, and Weitek 3167,
which have two to four times the throughput of an 80387.

The compiler generates code which optionally takes
advantage of the Phar Lap Virtual Memory Manager. The

latter makes it possible for a two megabyte 80386 system to
run programs as large as the free memory on your hard disk!

The compiler is a full implementation of PCC (the Bell
Labs Portable C Compiler, whose syntax is a superset of
Kemighan and Ritchie C). It includes all standard PCC
extensions as well as the December, 1988, draft of ANSI C
and many Microsoft C v;5.0 functions. Among these new
extensions are a set of graphics and BASIC-like screen
handling functions, in addition to hooks to the operating
system. These features make NDP C-386 compatible
enough to compile most existing 16-bit applications,
regardless of the source environment, provided they conform
to standard techniques for portability between computers.

NDP C-386 v.2.0 Features:
• Passes 98% of the Plum Hall Validity Suite for ANSi

System V UNIX C.
• Incorporates several new optimizations, including loop

unrolling, repeat common subexpression elimination,
register caching, and peephole optimization.

• Includes a command line switch to allow the compiler to
run in virtual memory.

• NDP-386 Virtual Memory option allows executable
programs to run in virtual memory using the Phar Lap
Virtual Memory Manager.

• Generates programs, procedures, and arrays limited
only by the amount of memory in the system, up to 4
gigabytes.

• Exceptional runtime speed due to global optimizations,
sophisticated register utilization to store 32-bit entities,
use of inline 32-bit arithmetic instead of library calls, and
the effective doubling of the system data bus.

• Ports existing applications by fully implementing AT&T's
PCC and its K & R subset.

• Generates inline code for coprocessors which makes
excellent use of all numeric registers.

• Supports full 80387 and mWl167/3167 numeric
instruction sets, including 80387 inline transcendentais.

• Supports customized coprocessor exception handling
procedures to be designed and implemented by the user
(examples are provided).

• Allows function and variable names of 31 characters

which may include the $ character.
• Includes the following types: 32-bit pointer and enum

types along with 8 byte double, 4 byte floats, 4 byte longs,
4 byte int, 2 byte short int, 1 byte char.

• An extended error function gets (and optionally prints)
DOS errors, mapping them separately through errno.

• Incorporates a library of graphics and keyboard routines
with enhanced features that supports CGA, MDA, EGA,
VGA, and Hercules adapters. (DOS version only)

• Includes mouse support.
• Provides a trace facility to aid in debugging.
• Memory mapped devices and physical memory can be

mapped into the program's linear address space.
• NDP C-386 can call or be called from NDP Fortran-386

or NDP Pascal-386 programs. Assembly language
routines can be interfaced with compiled output.

• The CC compiler driver makes it possible to use the same
switches for compiling, assembling, and linking when
working with DOS, UNIX V, or XENIX 2.3.

• Command line processing includes the name of the
current process.

• Fast I/O feature in DOS version makes it possible to
specify the size and numberof runtime buffers, resulting
in an I/O speed up that ranges up to15 times faster.

• Can be used with the newest generation of Phar Laptools
to produce embedded and ROMable code.

• NDP Windows is an optional library for creating menus
and storing, moving, or saving windows. It runs on MDA,
CGA, EGA, and Hercules adapters.

• NDP to Halo '88 Interface is an optional graphics
interface to Media Cybernetics Halo '88".

• NDP Hoops is an optional advanced object-oriented
graphics library.

• MicroWay also has a port of the AT&T C++ preprocessor
v.1.2 that runs in protected mode with the NDP C-386
compiler.

P.O. BOX 79 • KINGSTON • MA 02364 • TELEPHONE (508) 746-7341 • FAX (508) 746-4678

Optimization Features:
NDP C-386 converts the ASCII C text, one procedure at

a time, into a memory-based operator tree. During global
optimization, this tree is traversed from 5 to 50 times
depending upon the options selected and the structure of the
code. The primary goal of the global optimization is to store
variables in registers as opposed to memory. Eliminating
stores and loads to memory, on average, results in code that
runs a factor of 3 faster while taking only 1/3 the space of code
which stores variables in memory. The global analysis takes
into account variable lifetime, activity, size, and the benefits
of using faster running 16-bit addressing modes over the
slower running 32-bit modes where possible. The optimizer
produces code which takes maximum advantage of the
registers available in the numeric coprocessors that the
compiler supports. The generation of very high quality inline
numeric code is one of the outstanding features of the NDP
compilers.

The process of traversing the tree includes the
application of code transformations to the tree. These
transformations include numeric strength reductions, dead
code elimination, removal of loop invariant code from loops,
hoistingof common code out of blocks, constant propagation,
elimination of stack frame setup on procedure entry where
possible, conversion of small procedures into inline code
where possible, and a number of processor related peephole
optimizations. Loop optimizations which make the code
larger but faster can also be optionally performed. These
optimizations rearrange loops so that array base values are
computed outside of loops and then stored in registers where
they are used indirectly for addressing and incremented
when necessary. The optimizer also performs global
common subexpresslon elimination, caches array elements
in registers, and unrolls short "hot" loops into inline code.

Numeric Coprocessor Support:
The NDP C-386 compiler provides different code

generation for the following numeric coprocessors: Intel
80287, 80387, and 80387SX; Cyrix 83D87; and Weitek 1167
and 3167. NDP C-386 generates code to use the Weitek
3167 multiply and accumulate instruction.

NDP C-386 supports IEEE-754 floating point arithmetic.
The compiler provides a complete set of functions which
allows the programmer to read and change any value in the
numeric coprocessor control register.

The NDP C-386 compiler contains a general purpose
numeric exception handler. Under DOS, users can change
the response characteristics of the default handler, or write
their own customized handlers. The user manual includes

two examples of user-written handlers: one traps division by
zero and substitutes a very large number for infinity on the
NDP stack; the other traps underflows and substitutes zeros
for the result in memory.

Inline Assembler Feature:
An inline assembler is included in NDP C-386 which

helps inthe development of embedded code, device drivers,
and applications which take advantage of the underlying

hardware. The NDP C-386 inline assembler is unusual in
that it makes itpossibleto write assembly language inC! For
example, to increment the FAX register in assembly
language, you could write INC EAX. In NDP C-386, you
simply declare FAX to be a register aliased variable of type
unsigned, and use the conventional C statement, EAX++.
The compiler translates this C code into its corresponding
assembly language, INC EAX.

Register aliased variables come in very handy for
reading and writing ports inline as well as setting up and
using software interrupts inline. The following example puts
the current directory path into the string "string':

char string[64];
regSeax unsigned eax;
reg$edx unsigned edx;

regSesi char _esi;
eax - 0x4700;
edx - 0;
esi = string;
asm (eax, edx, esi, "int 21h");
printf ('Current directory is \'%s\'_',string);

The code that results is inline, as opposed to the MS-
DOS INT386 technique. The latter, which is also supported
for compatibility, requires two data structures to be set up
and a 50 line procedure (INT86) to be called.

Graphics Support:
The DOS version ofthe NDP C-386 compiler comes with

a library of over 100 functions to draw pixels, lines, ellipses
and text, move images and graphics cursors, read and write
ports, and execute interrupts. Special routines are included
to provide compatibility with the Microsolt C graphics library.
The NDP C-386 graphics library works with the MDA, CGA,
EGA, VGA, Super VGA, and Hercules graphics adapters. It
includes routines to automatically detect the hardware
configuration and determine the best graphics mode.
Complete documentation is provided, including simple,
clear examples.

System Requirements:
• Any 80386-based system; or any PC, XT, AT, or

compatible with an Intel Inboard/386 or MicroWay
Number Smasher-386.

• A numeric coprocessor is not required to compile.
However, an Intel 80287 or 80387, Cyrix 83D87,
MicroWay mW1167, or Weitek 3167 coprocessor is
necessaryto execute programs containing floating point
routines.

• Double-sided high density floppy drive.
° Hard disk drive with a minimum of two free megabytes.
° Two megabytes of extended memory (four megabytes

recommended).
• DOS version 3.2 or later as extended by Phar Lap

Development Tools (version 2.0 or later), UNIX 386
System V Release 3, or SCO XENIX Release 2.3.

GS-220-12g

